
Integrable discretizations of derivative nonlinear Schrödinger equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 7827

(http://iopscience.iop.org/0305-4470/35/36/310)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/36
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 7827–7847 PII: S0305-4470(02)31808-0

Integrable discretizations of derivative nonlinear
Schrödinger equations

Takayuki Tsuchida

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku,
Tokyo 153-8914, Japan

E-mail: tsuchida@poisson.ms.u-tokyo.ac.jp

Received 12 December 2001, in final form 18 July 2002
Published 28 August 2002
Online at stacks.iop.org/JPhysA/35/7827

Abstract
We propose integrable discretizations of derivative nonlinear Schrödinger
(DNLS) equations such as the Kaup–Newell equation, the Chen–Lee–Liu
equation and the Gerdjikov–Ivanov equation by constructing Lax pairs. The
discrete DNLS systems admit the reduction of complex conjugation between
two dependent variables and possess bi-Hamiltonian structure. Through
transformations of variables and reductions, we obtain novel integrable
discretizations of the nonlinear Schrödinger (NLS), modified KdV (mKdV),
mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled
Hirota, coupled Sasa–Satsuma and Burgers equations. We also discuss
integrable discretizations of the sine-Gordon equation, the massive Thirring
model and their generalizations.

PACS numbers: 02.30.Ik, 05.45.Yv, 42.81.Dp, 45.05.+x

1. Introduction

The inverse scattering method (ISM) was invented by Gardner et al [1] more than 30 years ago.
They expressed the KdV equation as the compatibility condition of an eigenvalue problem
and time evolution of the eigenfunction, and solved the KdV equation through the inverse
problem of scattering. A pair of operators which defines the eigenvalue problem and the time
evolution is now called the Lax pair. Zakharov and Shabat [2, 3] considered a generalization
of the eigenvalue problem and solved the nonlinear Schrödinger (NLS) equation

iut + uxx − 2uvu = O ivt − vxx + 2vuv = O (1.1)

under some conditions via the ISM. It is noteworthy that the NLS equation (1.1) is integrable
for matrix-valued variables u and v [4–7]. Throughout this paper, we use the symbol italic
O when dependent variables in the equation considered can take their values in matrices.
Ablowitz et al [8] formulated the Zakharov–Shabat method in a plain manner and constructed
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the hierarchy of the NLS equation (1.1). Up to now, a variety of nonlinear evolution equations
in continuous spacetime have been solved via the ISM based on modified versions of the
Zakharov–Shabat eigenvalue problem (see, e.g., [9–17]).

In the remarkable paper [18], Ablowitz and Ladik proposed a natural discretization of the
Zakharov–Shabat eigenvalue problem and obtained a discrete NLS hierarchy. Their success
suggests that discrete integrable hierarchies are obtained through natural discretizations of the
modified Zakharov–Shabat eigenvalue problems. It is, however, quite difficult to find such
discretizations directly. In a few successful studies [19–21], the difficulty is avoided skilfully
with the help of alternative approaches. Hence, wide applicability of Lax-pair formulations
has not been established in the theory of discrete integrable systems.

In this paper, we discuss integrable discretizations of derivative NLS (DNLS) equations
and related systems by elaborating a new formulation of Lax pairs. Among the DNLS
equations, the following three representatives are well known [22–24], i.e. the Kaup–Newell
equation [15],

iqK
t + qK

xx − i(qKrKqK)x = O irK
t − rK

xx − i(rKqKrK)x = O (1.2)

the Chen–Lee–Liu equation [25],

iqC
t + qC

xx − iqC
xr

CqC = O irC
t − rC

xx − irCqCrC
x = O (1.3)

and the Gerdjikov–Ivanov equation [26],

iqG
t + qG

xx + iqGrG
x q

G + 1
2q

GrGqGrGqG = O irG
t − rG

xx + irGqG
x r

G − 1
2 r

GqGrGqGrG = O.

(1.4)

It has been shown that (1.2)–(1.4) are integrable for matrix-valued variables [27–29] (see
[30, 31] for complete lists of integrable coupled DNLS equations). The DNLS equations (1.2)–
(1.4) correspond to special cases (δ = −1/2,−1/4, 0, respectively) of the generalized DNLS
equation [32]

iqt + qxx + i(4δ + 1)q2rx + 4iδqqxr + (δ + 1/2)(4δ + 1)q3r2 = 0
(1.5)

irt − rxx + i(4δ + 1)r2qx + 4iδrrxq − (δ + 1/2)(4δ + 1)r3q2 = 0.

The zero symbol 0 indicates that the dependent variables are restricted to scalars. We generate
(1.5) from the Gerdjikov–Ivanov equation (1.4) via the transformation

q = qG exp

(
−2iδ

∫ x

qGrG dx ′
)

r = rG exp

(
2iδ

∫ x

qGrG dx ′
)
. (1.6)

A comprehensive description of physical applications of the DNLS equations as well as their
exact solutions can be found in [23, 24]. An integrable discretization of the Chen–Lee–Liu
equation (1.3) was proposed by Date, Jimbo and Miwa [33]. However, their scheme does
not admit the reduction of complex conjugation between qC

n and rC
n . Therefore it is of little

practical use. In other studies on discrete DNLS equations [34–36], equations of motion are
not explicitly given. Practically, little is known about natural integrable discretizations of the
DNLS equations.

To solve this problem, we consider discrete analogues of relations between the DNLS
hierarchies and a generalization of the NLS hierarchy [15, 22, 37, 38]. We extend the
Lax-pair formulation of Ablowitz and Ladik to obtain a generalization of the discrete
NLS (Ablowitz–Ladik) system. We find that integrable discretizations of the DNLS
equations (1.2)–(1.4) together with their higher symmetries are embedded in the generalized
Ablowitz–Ladik system. With appropriate gauge transformations, we obtain standard forms
of eigenvalue problems for the discrete DNLS systems. Using a discrete version of the
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transformation (1.6), we obtain a discrete generalized DNLS system. All the discrete DNLS
systems with one exception admit the reduction of complex conjugation. Thus they inherit
the crucial property of the continuous DNLS systems. Through simple transformations and
reductions for the discrete DNLS systems, we obtain integrable discretizations of various
systems, e.g. the mixed NLS, matrix NLS, matrix KdV, matrix modified KdV (matrix
mKdV), coupled Sasa–Satsuma and Burgers equations. In this way, we can derive integrable
discretizations of surprisingly many systems from one generalization of the Ablowitz–Ladik
formulation. This exemplifies that some approaches based on a Lax-pair formulation are very
fruitful in the study of discrete integrable systems.

The sine-Gordon equation and its generalization are integrable via the ISM based on
the Zakharov–Shabat eigenvalue problem [39, 40]. In contrast, Ablowitz and Ladik were
unsuccessful in obtaining a local discretization of the sine-Gordon equation (cf (2.10) in [18]).
This does not indicate that their discretization of the Zakharov–Shabat eigenvalue problem is
useless in studying discrete sine-Gordon equations. It is just because time evolution of the
eigenfunction assumed in [18] is too general and inappropriate. We prove that discrete
sine-Gordon equations and their generalizations are associated with the Ablowitz–Ladik
eigenvalue problem (see appendices A and B). The massive Thirring model and its variant
types are known to have the same eigenvalue problems as the DNLS equations have [13–15,
27, 29, 37]. In particular, the massive Thirring model and the Chen–Lee–Liu equation (1.3)
have the eigenvalue problem in common. This indicates that the massive Thirring-type models
are related to some generalization of the sine-Gordon equation. Combining these items of
information, we derive integrable discretizations of the massive Thirring-type models from
the eigenvalue problems for the discrete DNLS systems.

This paper consists of the following. In section 2, we show that the DNLS equations
are embedded in a generalization of the NLS equation, and propose a generalization of
the Ablowitz–Ladik system. In section 3, we reveal that space discretizations (in short,
semi-discretizations) of the DNLS systems are embedded in the generalized Ablowitz–Ladik
system. In section 4, we obtain a variety of integrable lattice systems related to the semi-
discrete DNLS systems. In section 5, we investigate semi-discretizations of the massive
Thirring-type models. Section 6 is devoted to concluding remarks.

In the present version of this paper, we do not discuss time discretizations of the semi-
discrete DNLS systems. Some of the results on this problem can be found in old versions of
this paper (arXiv:nlin.SI/0105053 ver. 1 or 2).

2. Preliminaries

In this section, we first show that the DNLS equations (1.2)–(1.4) are embedded in a
generalization of the NLS equation (1.1). Next, we extend the Ablowitz–Ladik formulation
to obtain a semi-discretization of the generalized NLS system.

2.1. Embeddings of the DNLS equations into a generalized NLS equation

Let us begin with a brief description of Lax pairs. We consider a pair of linear equations

�x = U� �t = V� (2.1)

for a column vector � . The subscripts x and t denote the partial differentiations by x and t,
respectively. U and V are square matrices which depend on a parameter. The compatibility
condition of (2.1) is given by

Ut − Vx + UV − VU = O (2.2)



7830 T Tsuchida

which we call the zero-curvature condition. If we choose the matrices U,V appropriately,
(2.2) gives a system independent of the parameter. In such cases, the pair of matrices U,V
and the parameter are called the Lax pair and the spectral parameter, respectively.

We introduce the following form of the Lax pair:

U = iλ

[−I1

I2

]
+

[
w u

v s

]
(2.3a)

V = iλ2

[−2I1

2I2

]
+ λ

[
2u

2v

]
+ i

[
c ux −wu + us

−vx − vw + sv d

]
. (2.3b)

Here λ is the spectral parameter. U and V are divided into four blocks as (l1 + l2) × (l1 + l2)
matrices. I1 and I2 are, respectively, the l1 × l1 and l2 × l2 unit matrices. w, s, u, v are
matrix-valued variables. c and d are arbitrary functions at this stage. Substituting (2.3) into
the zero-curvature condition (2.2), we obtain the following system (see (26) in [41] for the
case of scalar variables):

iwt + cx −wc + cw + (uv)x + uvw −wuv = O

ist + dx − sd + ds − (vu)x − vus + svu = O

iut + uxx − ud + cu−wxu− 2wux + 2uxs + usx +w2u− 2wus + us2 = O

ivt − vxx − vc + dv + sxv + 2svx − 2vxw − vwx − s2v + 2svw − vw2 = O.

(2.4)

We call (2.4) the generalized NLS equation. If we set w = O, s = O, c = −uv, d = vu,
(2.4) is reduced to the matrix NLS equation (1.1).

We already know Lax pairs for the matrix DNLS equations (1.2)–(1.4) [29]. With the
help of gauge transformations, we can transform the Lax pairs into the form (2.3) (see, e.g.,
[42]). Thus the DNLS equations are embedded in the generalized NLS equation (2.4). We
omit details and show the main results in the following. For simplicity of the embedding
formulae, we change the scalings of variables in (1.2)–(1.4).

(a) If qK and rK satisfy the Kaup–Newell equation,

iqK
t + qK

xx + 2(qKrKqK)x = O irK
t − rK

xx + 2(rKqKrK)x = O (2.5)

w, s, u, v defined by

w = −qKrK s = rKqK u = qK v = rK
x − rKqKrK

satisfy the generalized NLS equation (2.4) with

c = −qK
x r

K − 2qKrKqKrK d = rKqK
x + 2rKqKrKqK.

(b) If qC and rC satisfy the Chen–Lee–Liu equation,

iqC
t + qC

xx + 2qC
xr

CqC = O irC
t − rC

xx + 2rCqCrC
x = O (2.6)

w, s, u, v defined by

w = O s = rCqC u = qC v = rC
x

satisfy the generalized NLS equation (2.4) with

c = −qCrC
x d = rCqC

x + rCqCrCqC.

(c) If qG and rG satisfy the Gerdjikov–Ivanov equation,

iqG
t + qG

xx − 2qGrG
x q

G − 2qGrGqGrGqG = O

irG
t − rG

xx − 2rGqG
x r

G + 2rGqGrGqGrG = O
(2.7)

u and v defined by

u = qG v = rG
x + rGqGrG

satisfy the matrix NLS equation (1.1).
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2.2. Generalization of the Ablowitz–Ladik system

We consider a semi-discrete version of the linear problem (2.1):

�n+1 = Ln�n �n,t = Mn�n. (2.8)

The compatibility condition of (2.8) is given by

Ln,t + LnMn −Mn+1Ln = O (2.9)

which is a semi-discrete version of the zero-curvature condition (2.2).
We generalize the Lax pair proposed by Ablowitz and Ladik [18] and consider the

following form:

Ln =
[
zwn un

vn
1
z
sn

]
Mn =

[
z2aI1 + cn zaw−1

n un + b
z
un−1s

−1
n−1

zavn−1w
−1
n−1 + b

z
s−1
n vn dn + b

z2 I2

]
. (2.10)

Here z is the spectral parameter and a, b are constants. Ln andMn are divided into four blocks
as (l1 + l2) × (l1 + l2) matrices. I1 and I2 are unit matrices. wn, sn, un, vn are matrix-valued
variables. cn and dn are arbitrary functions. Substitution of the Lax pair (2.10) into the
zero-curvature condition (2.9) yields the following system:

wn,t +wncn − cn+1wn + aunvn−1w
−1
n−1 − aw−1

n+1un+1vn = O

sn,t + sndn − dn+1sn + bvnun−1s
−1
n−1 − bs−1

n+1vn+1un = O
(2.11)

un,t + undn − cn+1un + bwnun−1s
−1
n−1 − aw−1

n+1un+1sn = O

vn,t + vncn − dn+1vn + asnvn−1w
−1
n−1 − bs−1

n+1vn+1wn = O.

We call (2.11) the generalized Ablowitz–Ladik system. When just two of wn, sn, un, vn are
functionally independent, we may determine cn, dn from the consistency of (2.11). If we set
wn = I1, sn = I2, cn = −a(I1 + unvn−1), dn = −b(I2 + vnun−1), (2.11) is reduced to the
matrix Ablowitz–Ladik system [43–47]:

un,t − aun+1 + bun−1 + (a − b)un + aun+1vnun − bunvnun−1 = O
(2.12)

vn,t − bvn+1 + avn−1 + (b − a)vn + bvn+1unvn − avnunvn−1 = O.

The system (2.12) with b = a∗ admits the reduction of complex conjugation vn = σu∗
n

and not the reduction of Hermitian conjugation vn = σu
†
n. Throughout this paper we use

σ to denote an arbitrary (but usually nonzero) real constant. We can construct an infinite
set of conservation laws for (2.11) by a recursive method [44, 45]. The first five conserved
densities are

tr logwn tr log sn tr log
(
wn − uns

−1
n vn

)
tr
(
unvn−1w

−1
n−1w

−1
n

)
tr
(
vnun−1s

−1
n−1s

−1
n

)
.

The generalized Ablowitz–Ladik system (2.11) gives a semi-discretization of the
generalized NLS equation (2.4) together with its higher symmetry. To see this, we suppose
the following scalings for (2.11):

wn(t) = I1 +�w(x, t) sn(t) = I2 +�s(x, t) un(t) = �u(x, t) vn(t) = �v(x, t)

a = −b = i

�2
cn(t) = − i

�2
I1 + ic(x, t) dn(t) = i

�2
I2 + id(x, t).

Here � denotes the lattice spacing and x = n�. In the continuum limit � → 0, (2.11)
is precisely reduced to (2.4). A correspondence between the spectral parameters is given by
z = exp(−iλ�). In the next section, we show that semi-discrete DNLS systems are embedded
in (2.11) through lattice analogues of the formulae (a)–(c) in section 2.1. We also mention that
a system of semi-discrete coupled NLS equations is obtained as a reduction of (2.11) [45].
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3. Semi-discrete DNLS systems

In this section, we obtain semi-discrete DNLS systems by considering lattice analogues of
(a)–(c) for the generalized Ablowitz–Ladik system (2.11). Through a discrete analogue of the
transformation (1.6), we obtain a semi-discrete generalized DNLS system.

3.1. Semi-discrete Kaup–Newell system

We find that a lattice analogue of (a) is given as follows.

(A) If qK
n and rK

n satisfy the system

qK
n,t − a

(
I1 − qK

n+1r
K
n+1

)−1
qK
n+1 + a

(
I1 − qK

nr
K
n

)−1
qK
n − b

(
I1 + qK

nr
K
n+1

)−1
qK
n

+ b
(
I1 + qK

n−1r
K
n

)−1
qK
n−1 = O (3.1a)

rK
n,t − b

(
I2 + rK

n+1q
K
n

)−1
rK
n+1 + b

(
I2 + rK

nq
K
n−1

)−1
rK
n − a

(
I2 − rK

nq
K
n

)−1
rK
n

+ a
(
I2 − rK

n−1q
K
n−1

)−1
rK
n−1 = O (3.1b)

wn, sn, un, vn defined by

wn = I1 − qK
nr

K
n sn = I2 + rK

n+1q
K
n un = qK

n vn = rK
n+1 − rK

n − rK
n+1q

K
nr

K
n

(3.2)

satisfy the generalized Ablowitz–Ladik system (2.11) with

cn = −bI1 − a
(
I1 − qK

nr
K
n

)−1
+ b

(
I1 + qK

n−1r
K
n

)−1

(3.3)
dn = −aI2 + a

(
I2 − rK

nq
K
n

)−1 − b
(
I2 + rK

nq
K
n−1

)−1
.

The system (3.1) with a = −b = i gives an integrable semi-discretization of the Kaup–Newell
equation (2.5), while (3.1) with a = b = −1 gives an integrable lattice version of a higher
symmetry of (2.5) (cf (3.39) in [27]).

To consider the reduction of complex conjugation or Hermitian conjugation, we suppose
that qK

n and rK
n are defined on the fractional lattice n ∈ Z/2. If b = a∗, the semi-discrete Kaup–

Newell system (3.1) admits either the reduction rK
n = iσqK∗

n− 1
2

or the reduction rK
n = iσqK†

n− 1
2
.

This property is crucial for various applications of (3.1).
Through the gauge transformation

�n =
[
f (z)I1 O

− 1
z
rK
n I2

]
�n (3.4)

where f (z) is an arbitrary function of z, the linear problem (2.8) and the Lax pair (2.10) with
(3.2) and (3.3) are changed into

�n+1 = LK
n�n �n,t = MK

n�n

and

LK
n =

[
zI1 − (

z− 1
z

)
qK
nr

K
n f (z)qK

n
1
f (z)

(−1 + 1
z2

)
rK
n

1
z
I2

]
=
[
zI1 zf (z)qK

n

O I2

][
I1 O

1
f (z)

(−1 + 1
z2

)
rK
n

1
z
I2

]
(3.5a)
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MK
n =




[
a(z2 − 1) + b

(−1 + 1
z2

)]
I1

+ b
(
1 − 1

z2

) (
I1 + qK

n−1r
K
n

)−1

f (z)
[
az

(
I1 − qK

nr
K
n

)−1
qK
n

+ b
z

(
I1 + qK

n−1r
K
n

)−1
qK
n−1

]
1
f (z)

[
a
(−z + 1

z

) (
I2 − rK

n−1q
K
n−1

)−1
rK
n−1

+ b
(− 1

z
+ 1
z3

) (
I2 + rK

nq
K
n−1

)−1
rK
n

] b
(−1 + 1

z2

) (
I2 + rK

nq
K
n−1

)−1



.

(3.5b)

We can check that substitution of the Lax pair (3.5) into the zero-curvature condition (2.9)
yields the semi-discrete Kaup–Newell system (3.1). If we set

f (z) =
(

−1 +
1

z2

) 1
2

z = exp(−iζ 2�) qK
n =

(
− i�

2

) 1
2

qn rK
n =

(
− i�

2

) 1
2

rn

the Ln-matrix (3.5a) has the following asymptotic form:

LK
n =

[
I1

I2

]
+�

[−iζ 2I1 ζqn

ζ rn iζ 2I2

]
+O(�2).

Consequently, in the continuum limit � → 0, we recover the eigenvalue problem proposed
by Kaup and Newell [15].

For the time being, we assume without loss of generality thatqK
n and rK

n are square matrices.
If necessary, we append dummy variables to qK

n and rK
n which are finally equalized to zero.

Then a set of Hamiltonian and Poisson brackets for the semi-discrete Kaup–Newell system
(3.1) is given by

H =
∑
n

[−a log det
(
I − qK

nr
K
n

)
+ b log det

(
I + qK

nr
K
n+1

)]
(3.6a)

and {
qK
n

⊗, qK
m

} = {
rK
n

⊗, rK
m

} = O
{
qK
n

⊗, rK
m

} = (δn+1,m − δn,m)�. (3.6b)

Here� denotes the permutation matrix: �ij

kl = δi,lδj,k. It is easily proved that qK
n,t = {

qK
n,H

}
and rK

n,t = {
rK
n ,H

}
coincide with (3.1a) and (3.1b), respectively.

Let us prove that in the periodic boundary case
(
qK
n+M = qK

n, r
K
n+M = rK

n

)
(3.1) has an

involutive set of conserved quantities. We introduce new variables pK
n by qK

n = pK
n+1 − pK

n and
pK
n+M = pK

n, which satisfy ultra-local Poisson brackets:{
pK
n
⊗, pK

m

} = {
rK
n

⊗, rK
m

} = O
{
pK
n
⊗, rK

m

} = δn,m�.

For convenience, we set f (z) = 1/z. Applying a gauge transformation to the Ln-matrix
(3.5a), we obtain a new ultra-local Ln-matrix:

LK
n(z) =

[−I pK
n+1

O I

]
LK
n

[−I pK
n

O I

]

=
[
zI

1
z
I

]
+

(
z− 1

z

)[
pK
nr

K
n −pK

n − pK
nr

K
np

K
n

rK
n −rK

np
K
n

]
.

The matrix LK
n(z) satisfies the fundamental r-matrix relation:{LK

n(λ)⊗, LK
m(µ)

} = δn,m
[LK

n(λ)⊗ LK
m(µ), r(λ, µ)

]
. (3.7)

Here r(λ, µ) in the case of scalar variables is given by

r(λ, µ) = − (λ
2 − 1)(µ2 − 1)

λ2 − µ2




1
0 1
1 0

1


 . (3.8)
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r(λ, µ) for matrix-valued variables is given by replacing the ones in the matrix (3.8) with the
permutation matrix�. This is similar to the r-matrix given in [7].

The fundamental r-matrix relation (3.7) results in commutativity of the traces of
the monodromy matrix LK

MLK
M−1 · · ·LK

1 for different values of the spectral parameter.
This generates a set of M conserved quantities in involution. Owing to the relation
tr
(LK

MLK
M−1 · · ·LK

1

) = tr
(
LK
ML

K
M−1 · · ·LK

1

)
we can write the conserved quantities in terms

of the original variables qK
n and rK

n . The set of conserved quantities includes the Hamiltonian
(3.6a) itself.

3.2. Semi-discrete Chen–Lee–Liu system

We find that a lattice analogue of (b) is given as follows.

(B) If qC
n and rC

n satisfy the system

qC
n,t − a

(
qC
n+1 − qC

n

) (
I2 + rC

nq
C
n

) − b
(
qC
n − qC

n−1

) (
I2 + rC

nq
C
n−1

)−1 = O

rC
n,t − b

(
I2 + rC

n+1q
C
n

)−1 (
rC
n+1 − rC

n

) − a
(
I2 + rC

nq
C
n

) (
rC
n − rC

n−1

) = O
(3.9)

wn, sn, un, vn defined by

wn = I1 sn = I2 + rC
n+1q

C
n un = qC

n vn = rC
n+1 − rC

n (3.10)

satisfy the generalized Ablowitz–Ladik system (2.11) with

cn = −aI1 − aqC
n

(
rC
n − rC

n−1

)
dn = −b (I2 + rC

nq
C
n−1

)−1
+ arC

nq
C
n. (3.11)

The system (3.9) with a = −b = i gives an integrable semi-discretization of the Chen–Lee–
Liu equation (2.6), while (3.9) with a = b = −1 gives an integrable lattice version of a higher
symmetry of (2.6) (cf (3.37) in [27]).

Unfortunately, the semi-discrete Chen–Lee–Liu system (3.9) admits neither the reduction
rC
n = iσqC∗

n−k nor the reduction rC
n = iσqC†

n−k . This is an intrinsic drawback for practical use.
We obtain an alternative semi-discretization of the Chen–Lee–Liu system, which admits the
reduction of complex conjugation, in section 3.5.

Through the gauge transformation (3.4), replacing rK
n by rC

n , the linear problem (2.8) and
the Lax pair (2.10) with (3.10) and (3.11) are changed into

�n+1 = LC
n�n �n,t = MC

n�n

and

LC
n =

[
zI1 + 1

z
qC
nr

C
n f (z)qC

n
1

f (z)

(−1 + 1
z2

)
rC
n

1
z
I2

]
(3.12a)

MC
n =




[
a(z2 − 2) + b

z2

]
I1 + a

(
I1 + qC

nr
C
n−1

)
− b
z2

(
I1 + qC

n−1r
C
n

)−1

f (z)
[
azqC

n

+ b
z

(
I1 + qC

n−1r
C
n

)−1
qC
n−1

]
1
f (z)

[
a
(−z + 1

z

)
rC
n−1

+ b
(− 1

z
+ 1
z3

) (
I2 + rC

nq
C
n−1

)−1
rC
n

] b
(−1 + 1

z2

) (
I2 + rC

nq
C
n−1

)−1



. (3.12b)

We can prove that substitution of the Lax pair (3.12) into the zero-curvature condition (2.9)
yields the semi-discrete Chen–Lee–Liu system (3.9). With appropriate scalings, we reproduce
the eigenvalue problem for the Chen–Lee–Liu system in the continuum limit.
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3.3. Semi-discrete Gerdjikov–Ivanov system

We find that a lattice analogue of (c) is given as follows.

(C) If qG
n and rG

n satisfy the system

qG
n,t − aqG

n+1 + bqG
n−1 + (a − b)qG

n + aqG
n+1

(
rG
n+1 − rG

n

)
qG
n − bqG

n

(
rG
n+1 − rG

n

)
qG
n−1

+ aqG
n+1r

G
n+1q

G
nr

G
nq

G
n − bqG

nr
G
n+1q

G
nr

G
nq

G
n−1 = O (3.13a)

rG
n,t − brG

n+1 + arG
n−1 + (b − a)rG

n − brG
n+1

(
qG
n − qG

n−1

)
rG
n + arG

n

(
qG
n − qG

n−1

)
rG
n−1

+ brG
n+1q

G
nr

G
nq

G
n−1r

G
n − arG

nq
G
nr

G
nq

G
n−1r

G
n−1 = O (3.13b)

un and vn defined by

un = qG
n vn = rG

n+1 − rG
n + rG

n+1q
G
nr

G
n (3.14)

satisfy the matrix Ablowitz–Ladik system (2.12).

If qG
n = I , the relation (3.14) between rG

n and vn is nothing but a discrete Miura transformation
[48]. The system (3.13) with a = −b = i gives an integrable semi-discretization of the
Gerdjikov–Ivanov equation (2.7), while (3.13) with a = b = −1 gives an integrable lattice
version of a higher symmetry of (2.7) (cf (3.45) in [27]). The semi-discrete Gerdjikov–
Ivanov system (3.13) with b = a∗ admits the reduction rG

n = iσqG∗
n− 1

2
and not the reduction

rG
n = iσqG†

n− 1
2
.

Through the gauge transformation (3.4) with replacing rK
n by rG

n , the linear problem (2.8)
and the Lax pair for (2.12) are changed into

�n+1 = LG
n�n �n,t = MG

n�n

and

LG
n =

[
zI1 + 1

z
qG
nr

G
n f (z)qG

n
1

f (z)

(−1 + 1
z2

) (
rG
n − rG

n+1q
G
nr

G
n

)
1
z
I2 − 1

z
rG
n+1q

G
n

]
(3.15a)

MG
n =




a(z2 − 1)I1 + aqG
nr

G
n−1

+ b
z2 q

G
n−1r

G
n − aqG

nr
G
nq

G
n−1r

G
n−1

f (z)
(
azqG

n + b
z
qG
n−1

)
1
f (z)

(−1 + 1
z2

) (
I2 − rG

nq
G
n−1

)
× (
azrG

n−1 + b
z
rG
n

) b
(−1 + 1

z2

) (
I2 − rG

nq
G
n−1

) − arG
nq

G
n

− brG
n+1q

G
n−1 − brG

n+1q
G
nr

G
nq

G
n−1


 .

(3.15b)

Putting the Lax pair (3.15) into the zero-curvature condition (2.9), we exactly obtain the semi-
discrete Gerdjikov–Ivanov system (3.13). The Ln-matrix (3.15a) depends on qG

n, r
G
n and rG

n+1,
thus it is not ultra-local. It is an open question whether the system (3.13) possesses a Lax pair
with an ultra-local Ln-matrix. In the continuum limit of space, we regenerate the eigenvalue
problem for the Gerdjikov–Ivanov system.

By a generalization of the transformation (3.14)

un = qn vn = λrn+1 − rn + λrn+1qnrn

for (2.12), we obtain a generalization of (3.13):

qn,t − aqn+1 + bqn−1 + (a − b)qn + aqn+1(λrn+1 − rn)qn − bqn(λrn+1 − rn)qn−1

+ aλqn+1rn+1qnrnqn − bλqnrn+1qnrnqn−1 = O (3.16a)

rn,t − brn+1 + arn−1 + (b − a)rn − brn+1(qn − λqn−1)rn + arn(qn − λqn−1)rn−1

+ bλrn+1qnrnqn−1rn − aλrnqnrnqn−1rn−1 = O. (3.16b)
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This system is considered as a one-parameter deformation of the matrix Ablowitz–
Ladik system (2.12). The change of variables qn = qG

nλ
n e[(λ−1)a+(1−λ−1)b]t , rn = rG

nλ
−n

e−[(λ−1)a+(1−λ−1)b]t and scalings of a, b cast (3.16) into (3.13). Transformations of this kind are
very useful for applications of the discrete DNLS systems and we utilize them in sections 4.1
and 4.2.

3.4. Semi-discrete generalized DNLS system

In sections 3.4 and 3.5, we assume that dependent variables are scalar. As a discrete analogue
of (1.6), we consider the following transformation for the semi-discrete Gerdjikov–Ivanov
system (3.13):

qn = qG
n

n∏
j=−∞

(
1 − qG

j−1r
G
j

1 + qG
j r

G
j

)−2γ

rn = rG
n

n∏
j=−∞

(
1 − qG

j−1r
G
j

1 + qG
j−1r

G
j−1

)2γ

. (3.17)

Here γ is a real parameter. It should be noted that both log
(
1 −qG

n−1r
G
n

)
and log

(
1 +qG

nr
G
n

)
are

conserved densities for (3.13). The form of the transformation is so chosen that the reduction
rG
n = iσqG∗

n− 1
2

results in rn = iσq∗
n− 1

2
.

The inverse of the transformation (3.17) is written as

qG
n = qn

n∏
j=−∞

gγ (qj rj )

gγ (−qj−1rj )
rG
n = rn

n∏
j=−∞

gγ (−qj−1rj )

gγ (qj−1rj−1)
. (3.18)

Here gγ (y) is defined by the functional equation

[1 + ygγ (y)]−2γ = gγ (y).

By the successive approximation, gγ (y) for a general value of γ is expressed as the power
series:

gγ (y) = 1 − 2γy + γ (6γ + 1)y2 + · · · . (3.19)

Substituting (3.18) into the semi-discrete Gerdjikov–Ivanov system (3.13), we obtain an
integrable lattice version of the generalized DNLS system:

qn,t − aqn+1gγ (qn+1rn+1)

[
1

gγ (−qnrn+1)
− qnrn+1

]
[1 + (2γ + 1)qnrngγ (qnrn)]

+ bqn−1gγ (−qn−1rn)

[
1

gγ (qnrn)
+ qnrn

]
[1 − (2γ + 1)qnrn+1gγ (−qnrn+1)]

+ (a − b)qn − 2γ bqnrn+1qngγ (−qnrn+1)− 2γ aqnrnqngγ (qnrn) = 0 (3.20a)

rn,t − brn+1gγ (−qnrn+1)

[
1

gγ (qnrn)
+ qnrn

]
[1 − (2γ + 1)qn−1rngγ (−qn−1rn)]

+ arn−1gγ (qn−1rn−1)

[
1

gγ (−qn−1rn)
− qn−1rn

]
[1 + (2γ + 1)qnrngγ (qnrn)]

+ (b − a)rn + 2γ arnqnrngγ (qnrn) + 2γ brnqn−1rngγ (−qn−1rn) = 0. (3.20b)

System (3.20) with a = −b = i gives an integrable semi-discretization of (1.5). As was
expected from the construction of (3.17), (3.20) with b = a∗ admits the reduction rn = iσq∗

n− 1
2
.

Although (3.20) is not an explicit expression for general γ , we can obtain approximate
expressions by using the power series (3.19).
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For some choices of γ, gγ (y) is written explicitly, e.g.

g−1(y) =
(

2

1 +
√

1 − 4y

)2

g− 1
2
(y) = 1

1 − y
g− 1

4
(y) =

√
1 +

1

4
y2 +

1

2
y

g0(y) = 1 g 1
2
(y) = 2

1 +
√

1 + 4y
.

When γ = −1/2, (3.20) coincides with the semi-discrete Kaup–Newell system (3.1) for scalar
variables.

3.5. Alternative semi-discrete Chen–Lee–Liu system

Setting γ = −1/4 in (3.20), we obtain an integrable semi-discretization of the Chen–Lee–Liu
system which is different from (3.9). We write the equation for qn:

qn,t − a

{
1 + (qnrn)2 + qnrn

√
1 + (qnrn)2

}{[√
1 + (qn+1rn+1)

2 + qn+1rn+1

] [√
1 + (qnrn+1)

2

− qnrn+1

]
qn+1 − qn

}
+ b

{
1 + (qnrn+1)

2 − qnrn+1

√
1 + (qnrn+1)

2

}

×
{[√

1 + (qn−1rn)
2 − qn−1rn

] [√
1 + (qnrn)2 + qnrn

]
qn−1 − qn

}
= 0.

(3.21)

Here we have changed the scaling of qnrn to eliminate fractions. The alternative semi-discrete
Chen–Lee–Liu system ((3.21) and the equation for rn) with b = a∗ admits the reduction
rn = iσq∗

n− 1
2
. In this respect, the alternative system is superior to the semi-discrete Chen–

Lee–Liu system (3.9).
System (3.9) for scalar variables is related to the semi-discrete Gerdjikov–Ivanov system

(3.13) via the transformation

qC
n = qG

n

n∏
j=−∞

(
1 − qG

j−1r
G
j

)
rC
n = rG

n

n∏
j=−∞

1

1 − qG
j−1r

G
j

.

These relations among the semi-discrete DNLS systems (3.1), (3.9) and (3.13) can be
generalized to the case of matrix-valued variables (cf [29]).

4. Systems related to the semi-discrete DNLS

In this section, we obtain integrable semi-discretizations of various systems through
transformations and reductions for the semi-discrete DNLS systems.

4.1. Semi-discrete mixed NLS systems

The so-called mixed NLS equations are obtained as a mixture of an integrable DNLS equation
and the NLS equation [16, 22–24, 30, 49, 50]. To give an actual example, we add +cq2r

and −cr2q to the left-hand sides of (1.5), respectively. Since the mixed NLS equations are
connected with the original DNLS equations through transformations of variables, they are
also integrable. By a semi-discrete version of such transformations

qn → qn ei(θn+ϕt) rn → rn e−i(θn+ϕt)
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for the semi-discrete DNLS systems, we straightforwardly obtain integrable semi-
discretizations of the mixed NLS systems.

4.2. Semi-discrete NLS equations and semi-discrete mKdV equations

For special choices of the parameters θ, ϕ, the semi-discrete mixed NLS systems are reduced
to novel lattice versions of the NLS equation and the mKdV equation.

Substituting qK
n = (−1)n e2(b−a)tqn, rK

n = (−1)n e2(a−b)t rn into the semi-discrete Kaup–
Newell system (3.1), we obtain

qn,t + a(I1 − qn+1rn+1)
−1qn+1 + a(I1 − qnrn)

−1qn − b(I1 − qnrn+1)
−1qn

− b(I1 − qn−1rn)
−1qn−1 + 2(b − a)qn = O (4.1a)

rn,t + b(I2 − rn+1qn)
−1rn+1 + b(I2 − rnqn−1)

−1rn − a(I2 − rnqn)
−1rn

− a(I2 − rn−1qn−1)
−1rn−1 + 2(a − b)rn = O. (4.1b)

Putting qC
n = (−1)n e2(b−a)t qn, rC

n = (−1)n e2(a−b)t rn into the semi-discrete Chen–Lee–Liu
system (3.9), we obtain

qn,t + a(qn+1 + qn)(I2 + rnqn)− b(qn + qn−1)(I2 − rnqn−1)
−1 + 2(b − a)qn = O

(4.2)
rn,t + b(I2 − rn+1qn)

−1(rn+1 + rn)− a(I2 + rnqn)(rn + rn−1) + 2(a − b)rn = O.

Substitution of qG
n = (−1)n e2(b−a)tqn, rG

n = (−1)n e2(a−b)t rn into the semi-discrete Gerdjikov–
Ivanov system (3.13) yields

qn,t + aqn+1 − bqn−1 + (b − a)qn + aqn+1(rn+1 + rn)qn − bqn(rn+1 + rn)qn−1

+ aqn+1rn+1qnrnqn − bqnrn+1qnrnqn−1 = O (4.3a)

rn,t + brn+1 − arn−1 + (a − b)rn + brn+1(qn + qn−1)rn − arn(qn + qn−1)rn−1

+ brn+1qnrnqn−1rn − arnqnrnqn−1rn−1 = O. (4.3b)

Systems (4.1)–(4.3) give integrable semi-discretizations of the matrix NLS equation for
a = −b = −i and the matrix mKdV equation for a = b = 1, respectively.

In the continuous theory, the matrix NLS equation (1.1) and the matrix mKdV equation
(see (4.24) in [4] or (2.12) in [7]) admit either of the reductions v = σu∗ and v = σu†. The
system (4.3) with b = a∗ admits the reduction rn = σq∗

n− 1
2

and not the reduction rn = σq
†
n− 1

2
.

This is similar to the property of the matrix Ablowitz–Ladik system (2.12) explained in
section 2.2. The system (4.1) with b = a∗ admits the reduction rn = σq

†
n− 1

2
as well as

the reduction rn = σq∗
n− 1

2
. In this respect, the differential-difference scheme (4.1) faithfully

inherits the property of the continuous hierarchy. This enables us to obtain integrable semi-
discretizations of reductions of the matrix NLS hierarchy, e.g. the coupled NLS equations
[5, 9], the coupled Hirota equations [6, 30, 51, 52] and the coupled Sasa–Satsuma equations
(cf section 4.3).

4.3. Semi-discrete Sasa–Satsuma equations

If dependent variables are real matrices, the Hermitian conjugation coincides with the
transposition. The matrix mKdV equation in this case takes the following form [6, 7, 53]:

ut + uxxx − 3σ
(
ux

tuu + u tuux
) = O. (4.4)
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Let us consider the vector reduction: u = (u1, . . . , u2m) ∈ R2m [4, 10]. Defining a set of
complex variables by ψk = u2k−1 + iu2k(k = 1, . . . ,m), we obtain the coupled Sasa–Satsuma
equations [10, 30, 54, 55] (cf (4.26) in [4]),

ψt + ψxxx − 3σ‖ψ‖2ψx − 3
2σ(‖ψ‖2)xψ = 0. (4.5)

Here ψ = (ψ1, . . . , ψm) ∈ Cm.
The system (4.1) with a = b = 1 and rn = σ tqn− 1

2
gives an integrable semi-discretization

of the real matrix mKdV equation (4.4). Following the same procedure as in the continuous
case, we obtain an integrable lattice version of the coupled Sasa–Satsuma equations (4.5).

4.4. Semi-discrete KdV equations

If we consider the reduction a = b = 1, qn = I + pn, rn = I for (4.1), we obtain a matrix
generalization of a semi-discrete KdV equation [48, 56],

pn,t = p−1
n+1 − p−1

n−1.

Through the reduction a = b = 1, qn = −I + yn, rn = I for (4.3), we obtain a matrix version
of a semi-discrete KdV equation [48],

yn,t + yn+1y
2
n − y2

nyn−1 = O.

4.5. Semi-discrete Burgers systems

The matrix Burgers equation,

qC
t − qC

xx + 2qC
xq

C = O (4.6)

is obtained as the reduction rC = −I for the Chen–Lee–Liu equation (2.6) (after scalings). The
Hopf–Cole transformation qC = −FxF−1 casts the linear diffusion equation Ft − Fxx = O

into (4.6).
In a similar way, we obtain integrable semi-discretizations of the Burgers equation together

with its higher symmetry. Equating rC
n with −I in the semi-discrete Chen–Lee–Liu system

(3.9), we obtain

qC
n,t − a

(
qC
n+1 − qC

n

) (
I − qC

n

) − b
(
qC
n − qC

n−1

) (
I − qC

n−1

)−1 = O. (4.7)

The substitution I − qC
n = Fn+1F

−1
n relates (4.7) with the linear equation

Fn,t − aFn+1 + bFn−1 + (a − b)Fn = O.

Setting rn = −1 in the alternative semi-discrete Chen–Lee–Liu system (3.21), we obtain

qn,t −
√

1 + q2
n

{
a

[√
1 + q2

n+1 − qn+1

]
qn+1 − a

[√
1 + q2

n − qn

]
qn

+ b

[√
1 + q2

n + qn

]
qn − b

[√
1 + q2

n−1 + qn−1

]
qn−1

}
= 0. (4.8)

The substitution
[√

1 + q2
n − qn

]2 = fn+1f
−1
n connects (4.8) with the linear equation

fn,t − afn+1 + bfn−1 + (a − b)fn = 0.

The systems (4.7) and (4.8) give two lattice versions of the Burgers equation for a = −b = 1
and its higher symmetry for a = b = 1, respectively.
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5. Semi-discrete massive Thirring-type models

In section 3, we obtained the Lax pairs for the semi-discrete DNLS systems. If we can
replace the Mn-matrices with appropriate ones, we obtain integrable semi-discretizations of
the massive Thirring-type models. For this purpose, the Lax pair introduced in appendix A
provides useful information.

5.1. Semi-discrete Kaup–Newell type

For the semi-discrete Kaup–Newell system in section 3.1, we replace the Mn-matrix (3.5b)
with the following one:

MK
n = 1

z − 1
z

[
1
z
I1 − 2

(
z− 1

z

)
φK
nχ

K
n 2if (z)φK

n

2i
f (z)

(−1 + 1
z2

)
χK
n −zI2 + 2

(
z− 1

z

)
χK
nφ

K
n

]
. (5.1)

Here φK
n and χK

n are new variables which are, respectively, l1 × l2 and l2 × l1 matrices.
Substituting the Lax pair (3.5a) and (5.1) into the zero-curvature condition (2.9), we obtain

qK
n,t + i

(
φK
n + φK

n+1

)
+ 2

(
qK
nχ

K
n+1φ

K
n + φK

n+1χ
K
n+1q

K
n

) = O

rK
n,t − i

(
χK
n + χK

n+1

) − 2
(
rK
nφ

K
nχ

K
n + χK

n+1φ
K
nr

K
n

) = O
(5.2)

φK
n − φK

n+1 + iqK
n = O

χK
n − χK

n+1 − irK
n = O.

The system (5.2) gives an integrable semi-discretization of the massive Thirring model of the
Kaup–Newell type (see (A.4) in [29]). As we expect from the property of the semi-discrete
Kaup–Newell system (3.1), (5.2) admits either the reduction rK

n = iσqK∗
n− 1

2
, χK

n = iσφK∗
n− 1

2
or

the reduction rK
n = iσqK†

n− 1
2
, χK

n = iσφK†
n− 1

2
.

We can eliminate qK
n and rK

n to obtain an integrable semi-discretization of the Mikhailov
model (see (4.21) in [37] or (3.47) in [27]),

φK
n,t − φK

n+1,t + φK
n + φK

n+1 + 2
(
φK
nχ

K
n+1φ

K
n − φK

n+1χ
K
n+1φ

K
n+1

) = O
(5.3)

χK
n,t − χK

n+1,t + χK
n + χK

n+1 − 2
(
χK
nφ

K
nχ

K
n − χK

n+1φ
K
nχ

K
n+1

) = O.

Through the reduction φK
n = (−1)n(ωn + I/4), χK

n = (−1)nI , (5.3) collapses into the simplest
version of the dressing chain [57],

ωn+1,t + ωn,t + 2ω2
n+1 − 2ω2

n = O.

5.2. Semi-discrete Chen–Lee–Liu type

For the semi-discrete Chen–Lee–Liu system in section 3.2, we replace theMn-matrix (3.12b)
with the following one:

MC
n = 1

z− 1
z

[
1
z
I1 2if (z)φC

n
2i
f (z)

(−1 + 1
z2

)
χC
n − 1

z
I2 + 2

(
z− 1

z

)
χC
nφ

C
n

]
. (5.4)

Plunging the Lax pair (3.12a) and (5.4) into the zero-curvature condition (2.9), we obtain

qC
n,t + 2iφC

n + 2qC
nχ

C
nφ

C
n = O

rC
n,t − 2iχC

n+1 − 2χC
n+1φ

C
n+1r

C
n = O

(5.5)
φC
n − φC

n+1 + iqC
n + qC

nr
C
nφ

C
n = O

χC
n − χC

n+1 − irC
n − χC

n+1q
C
nr

C
n = O.
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The system (5.5) gives an integrable semi-discretization of the massive Thirring model
(see (A.3) in [29]). As we expect from the property of the semi-discrete Chen–Lee–Liu
system (3.9), (5.5) admits neither the reduction rC

n = iσqC∗
n−k, χ

C
n = iσφC∗

n−k nor the reduction

rC
n = iσqC†

n−k, χ
C
n = iσφC†

n−k. In section 5.4, we obtain an alternative semi-discretization of the
massive Thirring model without this drawback.

5.3. Semi-discrete Gerdjikov–Ivanov type

For the semi-discrete Gerdjikov–Ivanov system in section 3.3, we replace the Mn-matrix
(3.15b) with the following one:

MG
n = 1

z− 1
z

[
1
z
I1 2if (z)φG

n
2i
f (z)

(−1 + 1
z2

) (
I2 − rG

nq
G
n−1

)
χG
n −zI2 + 2i

(
z− 1

z

)
rG
nφ

G
n

]
. (5.6)

Putting the Lax pair (3.15a) and (5.6) into the zero-curvature condition (2.9), we obtain

qG
n,t + i

(
φG
n + φG

n+1

)
+ i

(
qG
nr

G
nφ

G
n − φG

n+1r
G
n+1q

G
n

) = O

rG
n,t − i

(
χG
n + χG

n+1

)
+ i

(
rG
nq

G
n−1χ

G
n − χG

n+1q
G
nr

G
n

) = O

φG
n − φG

n+1 + iqG
n +

(
qG
nr

G
nφ

G
n + φG

n+1r
G
n+1q

G
n

) = O

χG
n − χG

n+1 − irG
n − (

rG
nq

G
n−1χ

G
n + χG

n+1q
G
nr

G
n

) = O.

(5.7)

The system (5.7) gives an integrable semi-discretization of the massive Thirring model of the
Gerdjikov–Ivanov type (see (A.4) in [29] with interchanging t and x). As we expect from
the property of the semi-discrete Gerdjikov–Ivanov system (3.13), (5.7) admits the reduction
rG
n = iσqG∗

n− 1
2
, χG

n = iσφG∗
n− 1

2
and not the reduction rG

n = iσqG†
n− 1

2
, χG

n = iσφG†
n− 1

2
.

If we eliminate φG
n and χG

n , we obtain another semi-discretization of the Mikhailov model,

qG
n+1,t

(
I2 − rG

n+1q
G
n

) − (
I1 + qG

n+1r
G
n+1

)
qG
n,t − qG

n − qG
n+1 = O

rG
n+1,t

(
I1 + qG

nr
G
n

) − (
I2 − rG

n+1q
G
n

)
rG
n,t − rG

n − rG
n+1 = O.

(5.8)

Comparing (5.8) with (5.3), we note the interchange of space and time. Through the reduction
qG
n = (−1)n(ξn − I), rG

n = (−1)nI for (5.8), we obtain the following equation:

(ξn+1ξn)t = ξn+1 − ξn.

5.4. Alternative semi-discrete Chen–Lee–Liu type

We assume that dependent variables are scalar and consider the transformation (3.17) together
with

φn = φG
n

n∏
j=−∞

(
1 − qG

j−1r
G
j

1 + qG
j−1r

G
j−1

)−2γ

χn = χG
n

n∏
j=−∞

(
1 − qG

j−2r
G
j−1

1 + qG
j−1r

G
j−1

)2γ

. (5.9)

Substituting the inverse transformation into (5.7), we obtain an integrable semi-discretization
of a generalized massive Thirring model. When γ = −1/2, the obtained system coincides
with (5.2). Setting γ = −1/4, we obtain an integrable semi-discretization of the massive
Thirring model which is different from (5.5). We write the equations for qn and φn:

qn,t + i
[√

1 + (qnrn)2 + qnrn
]
φn + i

[√
1 + (qnrn+1)2 − qnrn+1

]
φn+1 + 2

[√
1 + (qnrn)2

+ qnrn
]
φnχn+1qn + 2

[√
1 + (qnrn+1)2 − qnrn+1

]
φn+1χn+1qn = 0 (5.10a)

[√
1 + (qnrn)2 + qnrn

]
φn −

[√
1 + (qnrn+1)2 − qnrn+1

]
φn+1 + iqn = 0. (5.10b)
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Here we have changed the scaling of qnrn to eliminate fractions. Unlike (5.5), the alternative
semi-discrete massive Thirring model ((5.10) and the equations for rn and χn) admits the
reduction rn = iσq∗

n− 1
2
, χn = iσφ∗

n− 1
2
.

6. Concluding remarks

In this paper, we have investigated integrable discretizations of the DNLS systems from the
point of view of a Lax-pair formulation. We have found that lattice versions of the Kaup–
Newell system, the Chen–Lee–Liu system and the Gerdjikov–Ivanov system are embedded
in a generalization of the Ablowitz–Ladik system. With appropriate gauge transformations,
the eigenvalue problems for the lattice systems coincide with the continuous counterparts in
the continuum limit. Using a discrete analogue of the phase transformation (1.6), we obtain
a lattice version of the generalized DNLS system by Kund. All the discrete DNLS systems
but the semi-discrete Chen–Lee–Liu system (3.9) admit the reduction of complex conjugation
between two dependent variables. This property is indispensable for applications such as
difference schemes for numerical computation or modelling of nonlinear lattice vibrations.
We stress that the discrete DNLS systems have relations to a variety of discrete integrable
systems. Through changes of variables and reductions, we obtain integrable discretizations
of the mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled Sasa–Satsuma, Burgers
equations, etc. From the eigenvalue problems for the discrete DNLS systems, we derive
integrable discretizations of the massive Thirring-type models.

Besides the Ablowitz–Ladik system, there are other integrable discretizations of the NLS
hierarchy. We conjecture that other discrete DNLS systems are embedded in the discrete NLS
systems. In fact, we obtain another semi-discretization of the Gerdjikov–Ivanov system in
connection with the semi-discrete NLS system studied in [58] (see also [33, 43]). However,
the obtained system does not admit the reduction of complex conjugation. Thus it is less
attractive than (3.13). The example implies that the Ablowitz–Ladik formulation is an optimal
starting point for the study of discrete DNLS systems.

The NLS and DNLS systems for scalar variables possess tri-Hamiltonian structure
[59, 60]. The three sets of Poisson brackets are, respectively, the δ′(x − y) type for the
Kaup–Newell system, the δ(x − y) type for the Chen–Lee–Liu system and the δ(x − y) type
for the NLS system. We should note that all these systems are connected via transformations
of the dependent variables. We infer that the lattice versions of these systems studied in
this paper possess tri-Hamiltonian structure. The discrete counterpart of the first Hamiltonian
structure is (3.6) for the semi-discrete Kaup–Newell system (3.1). The Ablowitz–Ladik system
(2.12) has a set of ultra-local Poisson brackets [61–63] which is the discrete analogue of the
third Hamiltonian structure. Since the lattice systems are each connected with the others
through changes of variables (see section 3), they are at least bi-Hamiltonian. We have not
found the discrete counterpart of the second Hamiltonian structure for either the semi-discrete
Chen–Lee–Liu system (3.9) or the alternative system (3.21). It remains an unsolved problem
to prove explicitly that the Ablowitz–Ladik system and the semi-discrete DNLS systems are
tri-Hamiltonian.
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Appendix A. Semi-discrete sine-Gordon equation as a negative flow of the
Ablowitz–Ladik hierarchy

In this appendix, we prove that a semi-discrete sine-Gordon equation and its generalization
are integrable via the ISM based on the Ablowitz–Ladik eigenvalue problem. We introduce
the following form of the Lax pair:

Ln =
[
z un

vn
1
z

]
Mn = 1

z − 1
z

[ 1
z
an bn

cn −zan

]
. (A.1)

Here z is the spectral parameter. un, vn, an, bn, cn are scalar variables. The Mn-matrix is
simpler than that by Ablowitz and Ladik [18], while the Ln-matrix is the same. Substituting
(A.1) into the zero-curvature condition (2.9), we obtain the following six equations:

an − an+1 + uncn − vnbn+1 = 0 (A.2a)
un(cn − cn+1) + vn(bn − bn+1) = 0 (A.2b)

bn − bn+1 − un(an + an+1) = 0 (A.2c)
cn − cn+1 + vn(an + an+1) = 0 (A.2d)

un,t + bn − unan = 0 (A.2e)
vn,t − cn − vnan = 0. (A.2f )

Thanks to (A.2c) and (A.2d), we can write un and vn in terms of an, bn, cn:

un = bn − bn+1

an + an+1
vn = −cn − cn+1

an + an+1
. (A.3)

Then (A.2b) is automatically satisfied. Putting (A.3) into (A.2a), we obtain

a2
n + bncn = η2 (A.4)

where η is a constant.
If we set

an = η cos θn bn = cn = η sin θn

un and vn are expressed as

un = −vn = sin θn − sin θn+1

cos θn + cos θn+1
= tan

(
θn − θn+1

2

)
.

Then (A.2e) and (A.2f ) are combined into a semi-discrete sine-Gordon equation [64, 65],

θn+1,t − θn,t = η(sin θn + sin θn+1). (A.5)

By defining αn by θn = (αn + αn+1)/2, we rewrite (A.5) as [20]

αn+1,t − αn,t = 2η sin
(αn + αn+1

2

)
(A.6)

under appropriate boundary conditions.
More generally, bn and cn are functionally independent. Substituting an =

√
η2 − bncn

into (A.3), (A.2e) and (A.2f ), we obtain a semi-discretization of the reduced equation for the
O(4) nonlinear σ -model [40],(

bn − bn+1√
η2 − bncn +

√
η2 − bn+1cn+1

)
t

+
bn
√
η2 − bn+1cn+1 + bn+1

√
η2 − bncn√

η2 − bncn +
√
η2 − bn+1cn+1

= 0 (A.7a)

(
cn − cn+1√

η2 − bncn +
√
η2 − bn+1cn+1

)
t

+
cn
√
η2 − bn+1cn+1 + cn+1

√
η2 − bncn√

η2 − bncn +
√
η2 − bn+1cn+1

= 0. (A.7b)
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If we set η = 0 and bn = −cn = eφn , (A.7) is simplified to a semi-discrete Liouville
equation [66],

φn+1,t − φn,t = eφn + eφn+1 .

We have shown that the semi-discrete sine-Gordon equation (A.5) and its generalization
(A.7) are associated with the Ablowitz–Ladik eigenvalue problem. Thus they are integrated
by the ISM straightforwardly. The semi-discrete sine-Gordon equation (A.5) is associated
with another ISM-solvable eigenvalue problem [64, 65]. It is now clear that the difference
between the two eigenvalue problems is not essential (see also [21]). We obtain a lot of
knowledge on the semi-discrete sine-Gordon equation and its generalization from the study of
the Ablowitz–Ladik hierarchy.

In section 5, we investigate integrable semi-discretizations of the massive Thirring-type
models. The Mn-matrix in (A.1) with the constraint (A.4) gives helpful information for that.

Appendix B. Time discretizations of semi-discrete sine-Gordon equation

In this appendix, we discuss time discretizations of the semi-discrete sine-Gordon equation
and its generalization obtained in appendix A. We consider a time discretization of (2.8)

�n+1 = Ln�n �̃n = Vn�n (B.1)

where the tilde denotes the step-up shift (l → l + 1) in the discrete time l ∈ Z. The
compatibility of (B.1) leads to a full-discrete version of the zero-curvature condition [63, 67]:

L̃nVn = Vn+1Ln. (B.2)

As a discrete-time analogue of (A.1), we introduce the following form of the Lax pair:

Ln =
[
z un

vn
1
z

]
Vn =

[
1 0
0 1

]
+

h

z− 1
z

[ 1
z
an bn

cn −zan

]
. (B.3)

Here h denotes the difference interval of time. Substituting (B.3) into the zero-curvature
condition (B.2), we obtain the following six equations:

an − an+1 + ũncn − vnbn+1 = 0 (B.4a)

ũncn − uncn+1 + ṽnbn − vnbn+1 = 0 (B.4b)

bn − bn+1 − ũnan − unan+1 = 0 (B.4c)

cn − cn+1 + ṽnan + vnan+1 = 0 (B.4d)

ũn − un + h(bn − ũnan) = 0 (B.4e)

ṽn − vn − h(cn + ṽnan) = 0. (B.4f )

Thanks to (B.4c) and (B.4e), we can write un and ũn in terms of an and bn:

un = bn − bn+1 + hanbn+1

an + an+1 − hanan+1
ũn = bn − bn+1 − han+1bn

an + an+1 − hanan+1
. (B.5a)

Similarly, using (B.4d) and (B.4f ), we express vn and ṽn in terms of an and cn:

vn = − cn − cn+1 + hancn+1

an + an+1 − hanan+1
ṽn = −cn − cn+1 − han+1cn

an + an+1 − hanan+1
. (B.5b)

It is easily seen that (B.4b) is automatically satisfied. Putting (B.5) into (B.4a), we obtain
a2
n + bncn = η2(1 − han) or, equivalently,(

an +
hη2

2

)2

+ bncn = η2

[
1 +

(
hη

2

)2
]
. (B.6)

Here η is a constant.
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Relations (B.5) lead to the following system,

b̃n − b̃n+1 + hãnb̃n+1

ãn + ãn+1 − hãnãn+1
− bn − bn+1 − han+1bn

an + an+1 − hanan+1
= 0 (B.7a)

c̃n − c̃n+1 + hãnc̃n+1

ãn + ãn+1 − hãnãn+1
− cn − cn+1 − han+1cn

an + an+1 − hanan+1
= 0 (B.7b)

where an, bn, cn are related through (B.6). Substituting

an = −hη
2

2
+ η

√
1 +

(
hη

2

)2

cos θn bn = cn = η

√
1 +

(
hη

2

)2

sin θn

into (B.7), we obtain an integrable time discretization of the semi-discrete sine-Gordon
equation (A.5). More generally, putting

an = −hη
2

2
+

√
η2 +

(
hη2

2

)2

− bncn

into (B.7), we obtain an integrable time discretization of the semi-discrete reduced nonlinear
σ -model (A.7).

We shall extract a celebrated full-discrete sine-Gordon equation from (B.4). The equation
is interpreted as an integrable time discretization of (A.6). We introduce the following
parametrization:

an = −hη
2

2
+ η

√
1 +

(
hη

2

)2

cos

(
α̃n + αn+1

2

)
(B.8a)

bn = cn = η

√
1 +

(
hη

2

)2

sin

(
α̃n + αn+1

2

)
(B.8b)

un = −vn = tan

(
αn − αn+2

4

)
. (B.8c)

It is sufficient to consider (B.4a), (B.4c), (B.4e) among (B.4). For brevity, we employ the
following abbreviations:

xn = α̃n + αn+1

4
yn = αn + α̃n+1

4
k = 1 +

(hη)2

2
+ hη

√
1 +

(
hη

2

)2

.

Under the parametrization (B.8), we rewrite (B.4a), (B.4c), (B.4e) respectively as

cos xn cos yn+1

cos(xn − yn+1)
= cos yn cos xn+1

cos(yn − xn+1)
(B.9a)

k sin xn cos yn+1 + cos xn sin yn+1

cos(xn − yn+1)
= sin yn cos xn+1 + k cos yn sin xn+1

cos(yn − xn+1)
(B.9b)

k sin xn cos yn+1 − k−1 cos xn sin yn+1

cos(xn − yn+1)
= sin yn cos xn+1 − cos yn sin xn+1

cos(yn − xn+1)
. (B.9c)

With the help of (B.9a) we combine (B.9b) and (B.9c) into one equation:

k tan xn = tan yn. (B.10)
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Conversely, all of the relations (B.9) hold if xn and yn satisfy (B.10). Equation (B.10) is the
celebrated full-discrete sine-Gordon equation [68]. It is easily cast into the standard form [19],

sin

(
αn + α̃n+1 − α̃n − αn+1

4

)
=

hη

2√
1 +

(
hη

2

)2
sin

(
αn + α̃n+1 + α̃n + αn+1

4

)
.

We have obtained integrable full-discretizations of the sine-Gordon equation and the
reduced nonlinear σ -model. The obtained equations are integrable via the ISM based on the
Ablowitz–Ladik eigenvalue problem.
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